The deep decarbonisation in the European industry: Opening the "modeling space" for decision makers will accelerate necessary transformation

Potsdam/Germany

EUCALC receives funding from the European Union's Horizon **2020** research and innovation program under grant agreement # 730459.

Explore sustainable European futures

What is needed to accelerate further?

THE EU HAS SUCCESSFULLY DECOUPLED GREENHOUSE GAS EMISSIONS FROM ECONOMIC GROWTH

EU GDP up 58%

1990-2017

EUCALC

1990-2017

New Green Deal: "Man in the moon moment"

- 1 trillion € by 2030
- 2030 minus 50-55%
- 2050 zero

Indeed ",the commitment is still missing!"

Explore sustainable European futures

Technological Innovation New vision for a sustainable life style!

Sector Expert Consultations: ~ 1.000 invited, a few 100 were involved to share expertise, relevant issues and visions with the EUCalc Team

Schiphol **ECOFYS**

Department for Business, Energy & Industrial Strategy

MON WELTAR

ENERGISE

Transition Pathways Explorer: EURef as Benchmark (~-60% **1990-2050**) **Behavioral choices** \times +eucalc \$ 30 EUCALC 222 Gt Pathway Choose example pathway for Europe: GHG emissions 0 EU reference \$ Greenhouse gas emissions Europe 🔂 6k Key behaviours 5k > Travel **Ambition levels** > Homes Electricity 4k > Diet > Consumption 3k Industry Mt CO2e Technology and fuels > Transport 2k > Buildings Transport > Manufacturing 1k Buildings > Power Resources and land use Agriculture 0 > Land and food Land use > Biodiversity **Technology choices** -1k Boundary conditions 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 > Demographics & long-term Fossil Fuels Electricity Industry Land use Biodiversity > Domestic supply Buildings Agriculture — total > Constraints

Explore sustainable European futures

The approach in complex: Industrial production is not independent!

INPUTS

Lifestyle

- **Packaging demand**
- Paper and sanitary

Buildings

- Floor area (new and renovated)
- Appliances

Transport

- Cars, Trucks, Ships, ...
- **Transport infrastructure**

Agriculture

Fertilizer demand

Technology

Costs

EUGALC

- **Energy consumption (incl. feedstock)**
- **Emission factors (combustion and** process) Material decompositiion

Explore sustainable European futures

MANUFACTURING AND PRODUCTION MODULE

OUTPUTS

CCUS

Carbon captured

Climate

GHG emissions

Minerals

Material demand

Supply

Energy demand by fuel

Agri. & Land-use

Bioenergy demand

Air quality

PM emissions

Socio-economic

 Costs (CAPEX, OPEX) • Jobs

Iron & Steel (4) **Non-metallic minerals** (5) **Non-ferrous metals (3)** Chemicals (2) Paper & Pulp (2) **Other industries (6)**

Fossil fuel phase-out for heat : gas -95%; coal -95%; oil -95% in 2050. (2%), and biofuel (2%).

Turnaround in the building energy sector

Ideal decarbonisation pathways need to be defined as concerted across sectors!

European Reference Scenario

EUCALC

Explore sustainable European futures

...a cut of energy demand/improved energy efficiency of the building envelope ...switch to advanced electricity and renewable energy tech. for heating and cooling

Energy & Health: New & clean technologies

Greenhouse gas emissions

Greenhouse gas emissions

Mortality V

GHG emissions from electricity generation per technology (scope 1)

The problem: power generation

EURef in supply but significant electrification on demand side coupled with coal phase-out and ambitious renewable trajectories

GHG emissions from electricity generation per technology (scope 1)

Transport	Total EU28 + Switzerland popula % of urban population Passenger distance travelled urb Passenger distance travelled nor Passenger distance travelled nor	ation; oan; n-urban; n-shiftable;	A Ii	few festyles.	words	abo	
Buildings	Residential floor area; Residential floor area cooled; Comfort temperature; Number of appliances; Hours of appliances use; Product replacement rate;	Lifestyle out > 25 secto	tputs ors	Lifestyles modu	le allows to look	into <i>the e</i>	
Agriculture	Total calorie requirements; Calorie composition of diets; Calories of food wasted at consu	ımer level;	of changing social not demand.			ms in resource/en	
Manufacturing	Graphics and sanitary paper den Paper, plastic, glass & aluminium	nand; n packaging;					
Minerals	Population in the RoW;		•	Changes in inc	dividual behavior	e.g. favo	
Water	Total EU28 + Switzerland popula	ation;		less distance	travel increa	ased ve	
Employment	Active EU28 + Switzerland popu Different aggregations of calorie Paper demand; Sanitary and graphics paper;		occupancy may yield GHG reductions of passenger transport technology 58% (in 205				
GTAP	Floor intensity per capita; Passenger travel per capita; Different aggregations of calorie Paper and plastic packaging; Sanitary and graphics paper;	demand;		Some pathways	e pathways show adverse implications		
			Aluminum demand	Electricity generation	PM2.5-related deaths	Househo	
	Lifestyles pathway		+2%	+8%	-2%	-69%	
	Teo pa	chnology athway	+180%	+30%	-2%	-42%	
	Explore sustainable European	nutures					

Integrates Fairness Aspects

 Ask for 1.5 °C or the 2°C threshold and relates European budgets to the world

Success measure when choosing a pathway: staying within a set GHG budget

EUCAL Explore sustainable European futures

GT CO2 equiv.

Explore Countries

	Europe	Switzerland
	•	
Key behaviours		
> Travel		
> Homes		
> Diet		
> Consumption		
Technology and fuels		
> Transport		
> Buildings		
> Manufacturing		
> Power		
Resources and land use		
> Land and food		
> Biodiversity		
Boundary conditions		
> Demographics & long-term		
> Domestic supply		
> Constraints		

EUCalc: Transition Pathways Explorerfor daily usage and educational purposes

EUCAL Explore sustainable European futures

Summary

- Literature/Expert Guess (evidence based reasoning): defines future structured cocreation process with sector experts
- A model concept which allows users to evaluate carbon pathways considering various sector decisions (represented by approx. 60 levers)
- A pragmatic modelling approach which allows you to think out of the box! Keeps a homogeneous scale! – 28+1 countries!
- Enables users to understand intersectoral trade-offs and co-benefits of sector • decisions: shows needs - and much more efforts are needed!
- Covers consumptive (behavioral) and productive (structural) aspects not common!
- Calculates costs and job effects and can help to define European and/or country policies
- Online tool has approached a certain level of complexity, but can interpreted easily after short training (e.g. MOOC, background material)

http://tool.european-calculator.eu/app/

Explore sustainable European futures

EUGALC

(For test purposes!)

eadlines

- technologies and trends in the
- deployment of innovative low-carbon chnologies (such as hydrogen-based chemicals. electricity-based steelmaking or low-carbon cement) changes in the product design and materials choice,
- switch in the energy carrier mix towards renewable stay aligned with the EU 2050 carbon
- Exploiting the full potential of ptions may lead to a 90% reduction of greenhous transition
- Barriers to the implementation of novel, innovativ technologies (and even existing technologies) are identified in high investments that are needed, long investment cycles and possible lock

Contact

Potsdam Institute for Climate Impact Research (PIK)

Prof. Dr. Jürgen P. Kropp (Coordinator)

Deputy Chair: Head: **Research Domain II Climate Resilience Urban Transformationn**

E-Mail:

nsp@pik-potsdam.de

EUCALC receives funding from the European Union's Horizon 2020 research and innovation program under grant agreement # 730459.

....questions/interventions

